

Continuing Education Information

In support of improving patient care, this activity has been planned and implemented by American Academy of CME, Inc. and CheckRare CE. American Academy of CME, Inc. is Jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.

American Academy of CME, Inc., designates this enduring material for a maximum of 0.5 AMA PRA Category 1 CreditsTM. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Planner/Faculty Educator Dr. Elwing discloses the following relevant financial relationships with ineligible companies:

- Advisory Board Consultant: United Therapeutics, Aerovate Therapeutics, Gossamer Bio, Liquidia, Merck, Janssen/Actelion/Johnson & Johnson, Lung LLC, Pulmovant
- Grant/Research Support: United Therapeutics, Gossamer Bio, Bayer, Acceleron/Merck, Altavant Sciences, Aerovate Therapeutics, Pharmosa Biopharm/Liquidia, Actelion/Janssen/Johnson & Johnson, Lung LLC, Pulmovant
- Speaking Honorarium: United Therapeutics

Planners and reviewers for this activity have no relevant financial relationships with any ineligible companies.

All relevant financial relationships listed have been mitigated.

This program is supported by independent medical education grants from Merck and Mallinckrodt Pharmaceuticals.

What is PAH?

- Pulmonary arterial hypertension (PAH) is rare condition that, as the name implies, involves hypertension in the pulmonary arteries.
- Symptoms include dyspnea during exercise and fainting spells, dizziness, swelling of the ankles or legs, chest pain, and a racing pulse.
- Some cases of PAH are due to genetic changes in the *BMPR2* gene and are inherited in an autosomal dominant pattern. Diagnosis is based on the symptoms, clinical examination, and specialized testing.
- There are a number of treatments approved to manage symptoms of PAH including phosphodiesterase-5 inhibitors, endothelin receptor antagonists, prostacyclin pathway agents including infusions, activin signaling inhibitors and combination therapies. Other therapies may also include blood thinners, anti-hypertensive agents, oxygen therapy, etc.
- Since it is a rare condition, data presented at large medical conferences, like CHEST 2024, can get overlooked.

CHEST 2024

- American College of Chest Physicians Annual Meeting
- Held October 6-9, 2024, in Boston, Massachusetts
- One of the largest gatherings of clinicians and researchers focused on pulmonary medicine
- Abstracts published annually in supplement issue of CHEST

Selected Clinical Trials Presented at CHEST 2024

Self Reflective Question

"How do you stay updated on the latest clinical trial data, and what strategies do you use to effectively synthesize and apply that information to your clinical practice?"

Long-Term Safety and Efficacy of Treprostinil Inhalation Powder – BREEZE Study

Parameter	Baseline	Week 107 (N=19)	Week 131 (N=16)	Change from Baseline
6MWD (meters)	420	446	454	+15 m (Week 107) +14 m (Week 131)
PQ-ITD Satisfaction	-	87% 'strongly agree'	-	N/A
Mean Dose	-	72 ug QID	-	Max dose: 176 ug QID
Common Adverse	-	-	-	14% cough, 14% headache, 12% dizziness, 12% dyspnea
Events (%)				No serious Treatment-Related Adverse Events (TR-AEs)

Objective: Assess long-term safety, tolerability, and clinical outcomes

Design: Pts transitioned to treprostinil inhalation powder (QID). Optional extension phase with dose titration

Conclusion: Treprostinil inhalation powder was well-tolerated, no serious AEs

Real World Studies

Self Reflective Question

"Are you familiar with Real-World Evidence (RWE) studies, and how do you incorporate their findings into your clinical practice?"

Medication Up-Titration and Safety Using Midodrine

Objective: Assess effectiveness of midodrine in facilitating PAH medication up-titration

Design: Retrospective analysis of 433 PAH pts at Houston Methodist Lung Center (2005–2022)

57 pts prescribed midodrine; matched
 1:1 with a control group

Conclusion: Midodrine was well tolerated and safe, showing no adverse hemodynamic effects

Parameter	Midodrine Group (N=57)	Control Group (N=57)	P-Value
Pts w/ Medication Up-Titration	30	17	<0.05
Selexipag Dose Increase	Yes	No	<0.05
Epoprostenol Dose Increase	Yes	No	<0.001
Treprostinil Dose Increase	Yes	No	<0.05
Hemodynamic Compromise	None	None	N/A
Bradycardia	None	None	N/A

Tolerability of Inhaled Treprostinil

Group	FEV1/FVC Ratio	TAPSE (cm)	Cardiac Output (L/min)	Cardiac Index (L/min/m²)
Tolerant (N=34)	81.2	2.1	4.5	2.4
Intolerant (N=5)	68.3	1.7	3.9	2.2
Semi- Tolerant (N=4)	66.8	1.6	3.3	1.9

Objective: Identify factors influencing tolerability of inhaled treprostinil in PAH and pulmonary hypertension associated with interstitial lung disease (PH-ILD)

Design: Retrospective analysis of 43 pts (21 PAH); stratified into groups based on tolerance

Conclusion: Obstructive lung disease and RV dysfunction may be linked to reduced tolerance of inhaled treprostinil. (Trends observed, but <u>not statistically significant</u>)

Impact of SGLT2 Inhibitors (SGLT2i) on Mortality

Objective: Evaluate association between SGLT2i and all-cause mortality

Design: Retrospective analysis using TrinetX platform (2013-2023)

• Group A: 6,238 pts on SGLT2i

• Group B: 6,243 pts not on SGLT2i

Conclusion: SGLT2i use associated w/ reduced mortality at 1-, 3-, and 5-year follow-up

Follow-up Period	Group A (SGLT2i)	Group B (Non-SGLT2i)	Risk Reduction	P-Value
1 Year	8.1% mortality	15.5% mortality	7.4%	<0.0001
3 Years	13% mortality	22.5% mortality	9.2%	<0.0001
5 Years	14.6% mortality	25% mortality	10.4%	<0.0001

Ethnic Differences in PAH Treatment Patterns and Outcomes with Macitentan

Characteristic	HL Patients	nHL Patients
Median Age at Diagnosis	53 years	60 years
Congenital Heart Disease	12.8%	5.3%
Idiopathic/Heritable PAH	49.5%	57.0%
Obesity	34.2%	29.2%
1-Year Survival Estimate	93.8%	89.9%
1-Year Freedom from Hospitalization	62.5%	59.2%
Adverse Events	74.5%	81.5%

Objective: Evaluate characteristics, treatment patterns, and outcomes for Hispanic/Latino (HL) vs non-Hispanic/Latino (nHL) pts w/ PAH using macitentan

Design: Combined dataset of 4626 PAH patients (517 HL, 3907 nHL)

Conclusion: HL pts were younger at diagnosis, more likely to have congenital heart disease, and had delayed therapy initiation compared to nHL pts

Macitentan Outcomes in Black/African American vs. White Patients with PAH

Objective: Compare PAH treatment patterns and outcomes by race

Design: Descriptive analysis of 4626 pts w/ PAH from OPUS/OrPHeUS studies

Conclusion: Black/AA pts had more comorbidities and higher hospitalization rates, but overall treatment and survival were similar to White pts

Metric	Black/AA	White
Median age (years)	57	61
Female (%)	81.5%	74.1%
Connective tissue PAH (%)	33.0%	25.1%
1-year survival (%)	89.6%	90.3%
Freedom from hospitalization (%)	52.5%	61.2%
Persistence on macitentan (%)	70.1%	69.6%

Real-World Treatment Approaches in PAH

Objective: Explore real-world PAH treatment approaches and how they differ by site of care and risk status

Design: Survey (Nov 2023–Feb 2024) w/ pulmonologists and cardiologists, providing data on 768 pts w/ PAH

Conclusion: Despite guideline recommendations, many pts remain on monotherapy, particularly lowerrisk pts and in certain care settings

Treatment Approach	Percentage of Pts	
Monotherapy	46%	
Dual Combination Therapy	42%	
Triple Combination Therapy	12%	

Factors Influencing Treatment	Key Observations
Disease Severity (WHO FC)	Monotherapy decreases with increasing severity
Risk Status	Monotherapy higher in low-risk pts (81%)
Site of Care	Monotherapy more common in Private and Community settings

Surveys and Registry Data

Symptom Burden and Health-Related Quality of Life in PAH

Functional Class (FC)	Percentage of Pts
Class I	16.5%
Class II	41.5%
Class III	35.5%
Class IV	6.5%

Symptom Burden & HRQoL	Key Findings	
EmPHasis-10 Score	Mean = 27.1 (moderate HRQoL impairment)	
Most Bothersome Symptom	Tiredness (42.1%)	
PAH Symptom Severity (>7 days)	93% experienced some degree of symptoms	
No Impact of PAH on Life	7% reported no impact	

Objective: Explore symptom burden and HRQoL in pts w/ PAH through self-reported data

Design: Online survey conducted among 200 US adults w/ PAH, recruited via the Pulmonary Hypertension Association

Conclusion: Most pts experienced symptoms that impaired their HRQoL, highlighting need for patient reported outcomes (PROs) in clinical care

Ses DA et al. Patient-reported symptom burden and health-related quality of life in pulmonary arterial hypertension: Results from a patient's perspective on palliative care online survey. CHEST 2024:166 (suppl): A5835–A5836.

Transitioning to Selexipag from Other PPAs

Objective: Describe outcomes of pts w/ PAH transitioning from one prostacyclin pathway agent (PPA) to selexipag

Design: Prospective, observational SPHERE registry study (2016–2021); data from 759 pts across US

Conclusion: Transitioning to selexipag from another PPA was well tolerated, with stable or improved disease in most pts after 18 months

Outcomes	Findings
18-Month Survival Rate	89%
Stable/Improved WHO Functional Class (18-Month Follow-Up)	64% stable, 21% improved
AEs Leading to Discontinuation (Selexipag-Related)	<10%
All-Cause Hospitalizations	40% of patients
Discontinuation Due to Selexipag- Related AE	5 patients

Chakinala MM et al. Characteristics and outcomes of patients with pulmonary arterial hypertension transitioning to selexipag from another prostacyclin pathway agent in the SPHERE registry. CHEST 2024:166 (suppl): A5806–A5811.

Self-Reported Mental Health Comorbidities in Patients Receiving Selexipag

Outcomes	With MH Comorbidities	Without MH Comorbidities
Dual Therapy (Endothelin Receptor Antagonist + PDE-5 Inhibitor)	34%	45%
Median Time to Selexipag Initiation from Diagnosis	3.3 years	2.6 years
WHO Functional Class (Stable/Improved at 18 Months)	87%	N/A
REVEAL 2.0 Risk Status (Stable/Improved at 18 Months)	40%	N/A
Median Time to First Hospitalization	10.7 months	15.6 months
36-Month Survival	77%	84%

Objective: Describe treatment and outcomes of pts with self-reported mental health comorbidities from the SPHERE registry

Design: US-based, multicenter, prospective, observational study of PAH patients (2016–2021)

Conclusion: Pts with mental health comorbidities have similar treatment patterns and outcomes to those without mental health comorbidities

Comorbidities and Complicated Cases

Self Reflective Question

"What are the most common comorbidities observed in PAH patients, and what strategies do you use to address these issues effectively?"

Cardiopulmonary Hemodynamics and Outcomes in Pulmonary Hypertension Post-Kidney Transplant

Objective: Evaluate association of cardiopulmonary hemodynamics with adverse outcomes following kidney transplant (KT)

Design: Multicenter retrospective cohort study of KT pts who underwent right heart catheterization (RHC) for cardiopulmonary hemodynamic assessment ≤ 1 year prior to transplant

Conclusion: mPAP ≥30 mmHg and elevated cardiac output (CO) on RHC are strong predictors of mortality and MACE following KT

Measure	Key Findings		
Pulmonary Hypertension (PH; mPAP >20 mmHg)	Present in 79%		
Mortality	23% experienced post-KT		
Delayed Graft Function (DGF)	Occurred in 25% of patients		
Major Adverse Cardiovascular Events (MACE)	34% experienced		
	2.77× risk of MACE (P=0.029)		
Predictor: mPAP ≥30 mmHg	Present in 63% of mortality cases (vs 32%, P=0.001)		
Predictor: Elevated CO	1.08× risk of mortality (P=0.033)		
Echocardiographic PH	Not predictive of post-KT outcomes		

Jose A et al. Association of cardiopulmonary hemodynamics and outcomes in pulmonary hypertension following kidney transplant: A multicenter retrospective cohort study. *CHEST* 2024:166 (suppl): A6515-A6517.

Efficacy and Safety of Inhaled Treprostinil in Connective Tissue Disease-Associated PAH (CTD-PAH): TRIUMPH Study Analysis

Measure	CTD-PAH (iTRE)	CTD-PAH (PBO)	Non-CTD- PAH (iTRE)	Non-CTD- PAH (PBO)
6MWD Change (m)	24.8 (mean)	-3.4 (mean)	37.0 (mean)	8.0 (mean)
Improvement in 6MWD	28.2 m		29.0 m	
NT-proBNP Change (pg/mL)	-90.0 (median)		-36.0 (median)	
Functional Class Change	13.5% improve d	0% worsene d	28.4% improved	0% worsened
Adverse Events (%)	97.5%	97.3%	98.7%	92.8%

Objective: Evaluate efficacy and safety of inhaled treprostinil in pts w/ CTD-PAH compared to non-CTD-PAH

Design: Post hoc analysis of the TRIUMPH study, a multicenter, double-blind, placebo-controlled study of inhaled TRE in pts w/ PAH

Conclusion: Inhaled treprostinil provides comparable improvements in 6MWD and NT-proBNP levels in CTD-PAH and non-CTD-PAH w/ similar safety profile

Iron Deficiency Anemia Treatment and Clinical Outcomes

Outcomes	Post-Treatment		
Iron Levels	Serum ferritin, iron level, and transferrin saturation significantly increased (P<0.05)		
Hemoglobin	Significant increase (P<0.05)		
Pulmonary/Cardiac Indices	Decrease in mean pulmonary artery pressure, improvement in cardiac index (P<0.05)		
Functional Outcomes	Improved six-minute walk distance, WHO functional class, and REVEAL Lite 2.0 score (P<0.05)		

Objective: Evaluate the impact of iron deficiency anemia (IDA) treatment on clinical outcomes in pts w/ PAH

Design: Single-center, retrospective study; 53 pts w/ PAH and IDA, treated w/ oral (N=36) or intravenous (N=17) iron

Conclusion: Iron therapy in PAH w/ IDA significantly improved iron levels, pulmonary and cardiac indices, and functional outcomes

Singh S et al. Improved outcomes reveal(ed) with iron therapy in patients with pulmonary arterial hypertension and iron deficiency anemia. *CHEST* 2024:166 (suppl): A5794–A5795.

Case Study: Managing HIV-Associated PAH with Drug-Drug Interactions (DDIs)

Conclusion: Clinicians must carefully assess and manage DDIs in HIV-PAH treatment to optimize outcomes and maintain viral suppression while minimizing adverse effects.

57 y/o male w/ HIV on abacavir/dolutegravir/ lamivudine presents w/ symptoms of severe PAH + shortness of breath.

Initial PAH treatment w/macitentan and riociguat leads to symptom improvement.

 However, increasing riociguat doses causes severe nausea + vomiting, likely due to interactions w/ antiretroviral therapy.

Switching to tadalafil results in continued symptomatic and hemodynamic improvement.

Efficacy of Parenteral Vasodilators in Treating Right Ventricular Failure with Elevated Pulmonary Capillary Wedge Pressure (PCWP)

Parameter	Baseline	Post-Therapy	% Improvement
Mean Pulmonary Artery Pressure (mPAP, mmHg)	53.6	Reduced	Significant
Pulmonary Vascular Resistance (PVR, Wood units)	11.5	Reduced	Significant
Cardiac Index (CI, L/min/m²)	Low	Improved	Moderate
Tricuspid Annular Plane Systolic Excursion (TAPSE, mm)	Reduced	Improved	Moderate
Right Ventricular Systolic Pressure (RVSP, mmHg)	High	Reduced	Significant

Objective: Evaluate efficacy and safety of parenteral vasodilators for RVF with elevated PCWP in pts w/ PAH.

Design: Retrospective case series; five PAH pts with RVF, treated with parenteral prostacyclin (IV epoprostenol or IV treprostinil)

 Pre- and post-therapy ECG and hemodynamic measurements analyzed.

Conclusion: Parenteral prostacyclin therapy safely improves RV function and reduces PCWP in PAH with RVF.

Impact of PAH on Outcomes in First Myocardial Infarction Episodes

Objective: Assess impact of a first myocardial infarction (MI) on pts w/ PAH compared to general population

Design: Retrospective analysis using National Inpatient Sample Database (2016-2020)

Conclusion: PAH is associated w/ higher mortality, longer hospital stays, greater costs, and increased need for interventions in first MI episodes

Outcome	First STEMI	First NSTEMI	Any First MI
Unadjusted Mortality OR	2.36 (P<0.001)	1.97 (P<0.001)	1.74 (P<0.001)
Adjusted Mortality OR	1.29 (P=0.002)	1.23 (P<0.001)	1.11 (P=0.006)
Length of Stay (days)	+1.7	+1.3	+1.35
Cost Increase (USD)	+43,477.92	+22,404.59	+23,050.94
Intubation Odds	1.53	1.34	1.24
Cardiac Assistance Odds	1.88	1.73	1.52

Carvalhais RM et al. The burden of pulmonary artery hypertension on patients admitted due to first episode of myocardial infarction: A nationwide glance, 2016—2020. CHEST 2024:166 (suppl): A5819—A5820.

Biomarkers

Initial Validation of the Pulmonary Hypertension Functional Classification Self-Report (PH-FC-SR)

Measure	PH-FC-SR	WHO-FC	Correlations (r)
Class Concordance ±1	93.1%	-	0.52 (polychoric)
Class Concordance Exact	Class I: 68.8%, Class III: 56.3%, Class II: 36.8%	+	0.44 (weighted kappa)
Shortness of Breath	-	r	= 0.75
Fatigue	-	r	= 0.58
Energy	-	r	= 0.61
EmPHasis-10	-	r	= 0.81
SF-36 Physical Function	-	r	= 0.76

Objective: Validate PH-FC-SR in assessing disease severity from pt perspective

Design: Non-interventional, observational study using pt- and clinician-reported data collected via survey and clinical visit (Cleveland Clinic and Mayo Clinic)

Conclusion: PH-FC-SR demonstrates strong construct validity, aligning closely w/ WHO-FC while offering unique insights into pts' perception of PAH severity

Clinical Pearls

Summary

- Treprostinil inhalation powder appears to be a safe, effective, and tolerable long-term treatment option for pts with PAH.
- Midodrine is well tolerated and safe, and may be used to safely facilitate medication adjustments in hospitalized pts.
- Pts with evidence of obstructive lung disease may be less tolerant of inhaled treprostinil.
- The use of SGLT2i is associated with mortality reduction in PAH.
- Both Hispanic/Latino, and Black/African American pts with PAH experience delayed PAH therapy initiation and more comorbidities compared to White pts; however, patterns of treatment safety and efficacy were similar.
- Despite recent guidelines recommending combination therapy for all pts with PAH, a substantial proportion remain on monotherapy.
- Most pts experience PAH symptoms that impair their health-related quality of life.
- Transitioning to selexipag from another PPA was well tolerated, w/ stable or improved disease in most pts after 18 months.

Summary

- Pts w/ and w/out self-reported mental health comorbidities receive similar PAH-specific treatment and have similar outcomes.
- Inhaled treprostinil provides comparable improvements in 6MWD and NT-proBNP levels in CTD-PAH and non-CTD-PAH.
- Iron therapy in PAH pts w/ IDA improves iron levels, pulmonary and cardiac indices, and functional outcomes.
- Clinicians should carefully assess and manage DDIs in HIV-PAH treatment.
- Parenteral prostacyclin therapy safely improves RV function and reduces PCWP in PAH w/ RVF.
- The first MI episode in PAH significantly impacts patients.
- PH-FC-SR may serve as a valuable complementary tool to WHO-FC in patient-centered PH assessment.