## Warm Autoimmune Hemolytic Anemia

Diagnosis, Treatment Options, and Treatments in Development

Irina Murakhovskaya, MD Montefiore Medical Center Albert Einstein College of Medicine New York, NY Bruno Fattizzo, MD University of Milan, Milan, Italy Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy

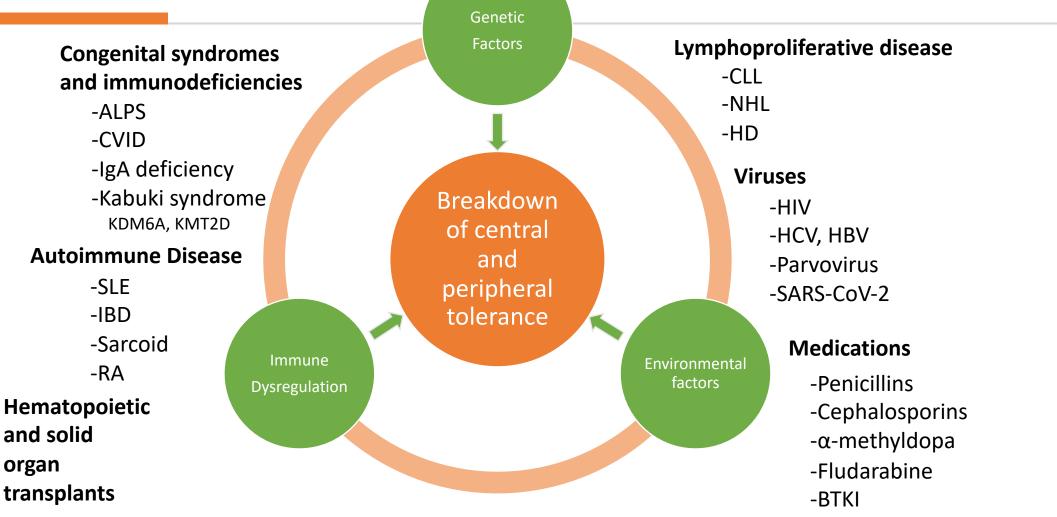
#### Disclosures

#### Irina Murakhovskaya, MD

Received consultancy honoraria and Speaker's bureau from Alexion, Apellis, Janssen, Novartis, Rigel, Sanofi; Grant/Research Support: Sanofi, Novartis, Alexion, Jansen, Apellis, Rigel, Incyte

#### Bruno Fattizzo, MD

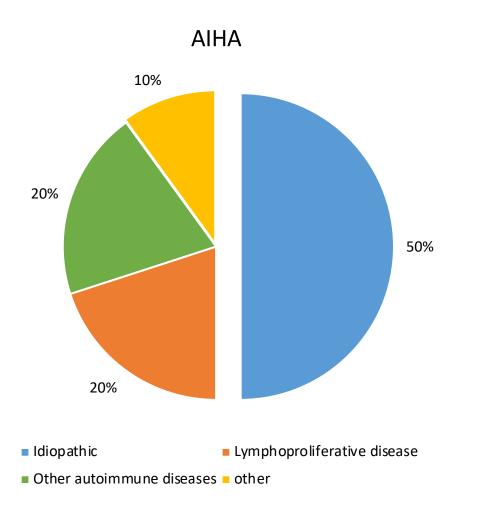
Received consultancy honoraria and Speaker's bureau from Alexion, Janssen, Sobi, Annexon, Agios, Bristol Myers Squibb, and has served on the Speaker's bureau for Janssen, Sobi, Bristol Myers Squibb, Novartis


## What is wAIHA

#### Autoimmune Hemolytic Anemia

Antibody mediated RBC destruction with or without complement involvement
 Incidence 1-3/100,000/yr; prevalence 17/100,000

|        |                                                                    | Autoantibody Characteristics          |                                          |             |                                     |  |  |  |  |
|--------|--------------------------------------------------------------------|---------------------------------------|------------------------------------------|-------------|-------------------------------------|--|--|--|--|
|        |                                                                    | Class                                 | Optimal T of<br>Reaction (Range)         | Specificity | DAT Positivity                      |  |  |  |  |
| 60-70% | Warm AIHA (wAIHA)                                                  | IgG (possible<br>Complement fixation) | 37 °C (0–40)                             | Rh system   | IgG or IgG + C                      |  |  |  |  |
| 20-25% | Cold Agglutinin Disease<br>(CAD)                                   | IgM (common complement fixation)      | 4 °C (4–34)                              | I/i system  | С                                   |  |  |  |  |
| 5-10%  | Mixed AIHA                                                         | warm IgG and cold IgM                 | 4 °C and 37 °C                           | //          | IgG + high titer cold IgM           |  |  |  |  |
| 1-5%   | Paroxysmal ColdIgG (commonHemoglobinuria (PCH)complement fixation) |                                       | Reacts at 4 °C and<br>hemolyzes at 37 °C | P Antigen   | Positive<br>Donath-Landsteiner Test |  |  |  |  |

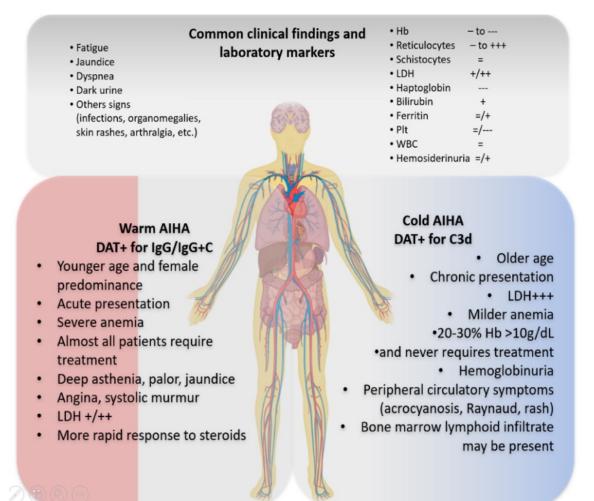

### AIHA Pathogenesis



-Immune checkpoint inhibitors

Barcellini W, Fattizzo B. Front Immunol. 2020; 11: 946.Quinn R, Murakhovskaya I. Hemato. 2021; 2: 463-476.

### Causes of Autoimmune Hemolytic Anemia




Lymphoproliferative Disease

Valent P, Lechner K. Wein Klin Wochenschr. 2008; 93: 447-450.

## Diagnosing wAIHA

#### Symptoms of Autoimmune Hemolytic Anemia



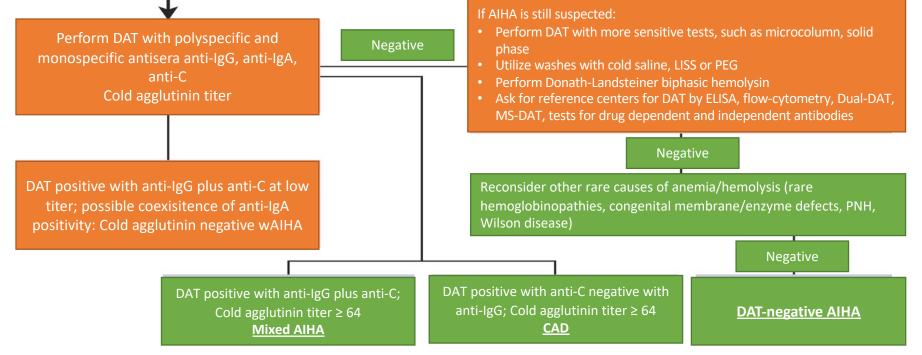
Fattizzo B et al, J Clin Med. 2020; 9: 3858.



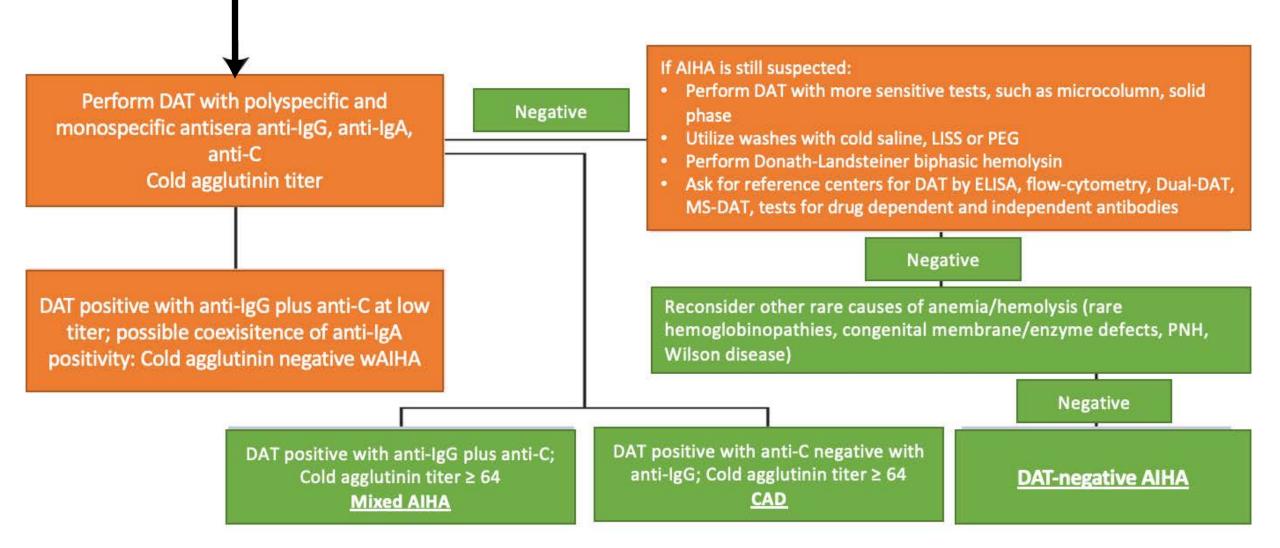
Perform a careful anamnesis and baseline investigation

Identify the hemolytic nature of anemia:

Reticulocytosis


Unconj. hyperbilirubinemia Reduced haptoglobin Increased LDH Family and personal history for congenital anemias, previous transfusion, pregnancy infections, drugs, toxic causes (Shiga toxin producing Escherichia coli, Clostridium, snake or spider bites) Consider coexistence of iron, vitamin B12, or folate deficiency, liver and renal disease

Also present in non-hemolytic conditions (hemorrhage, pregnancy, acclimation) Absent/inadequate in AIHA with autoimmunity against BM, congenital dyserythropoietic anemia, associated BM disease

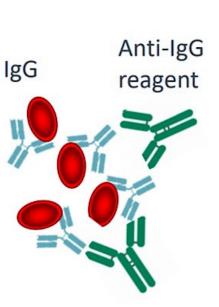

Increased also in Gilbert syndrome, liver disease

Consider false positive for congenital deficiency or liver failure Falsely normal for infection/inflammation and renal disease

Increased also in diseases involving cellular necrosis or increased tissue turnover Highly increased in intravascular hemolysis (PNH, thrombotic microangiopathies, prosthetic valves), or vitamin B12 deficiency



#### Family and personal history for congenital anemias, previous transfusion, pregnancy Perform a careful anamnesis and infections, drugs, toxic causes (Shiga toxin producing Escherichia coli, Clostridium, baseline investigation snake or spider bites) Consider coexistence of iron, vitamin B12, or folate deficiency, liver and renal disease Also present in non-hemolytic conditions (hemorrhage, pregnancy, acclimation) Absent/inadequate in AIHA with autoimmunity against BM, congenital dyserythropoietic anemia, associated BM disease Identify the hemolytic nature of anemia: Increased also in Gilbert syndrome, liver disease Reticulocytosis Unconj. hyperbilirubinemia Reduced haptoglobin Increased LDH Consider false positive for congenital deficiency or liver failure Falsely normal for infection/inflammation and renal disease Increased also in diseases involving cellular necrosis or increased tissue turnover Highly increased in intravascular hemolysis (PNH, thrombotic microangiopathies, prosthetic valves), or vitamin B12 deficiency




## Direct Antiglobulin Test (Direct Coombs) Test



1945

Used rabbit antihuman globulin to identify autoantibodies on RBC surface



Agglutination with antilgG reagent DAT + lgG (+/- C) 10% of AIHA are DAT negative: IgA Abs Low-affinity IgG Low test sensitivity

#### Positive DAT in the absence of hemolysis:

0.1% healthy population False positive: Hypergammaglobinemia, IVIG

#### Next level testing:

Anti-IgA reagent Cold wash solution Low ionic solutions/PEG


More sensitive testing: Microcolumn Solid phase Agglutination Flow cytometry Mitogen-stimulated DAT

#### Clinical severity and predictors of relapse

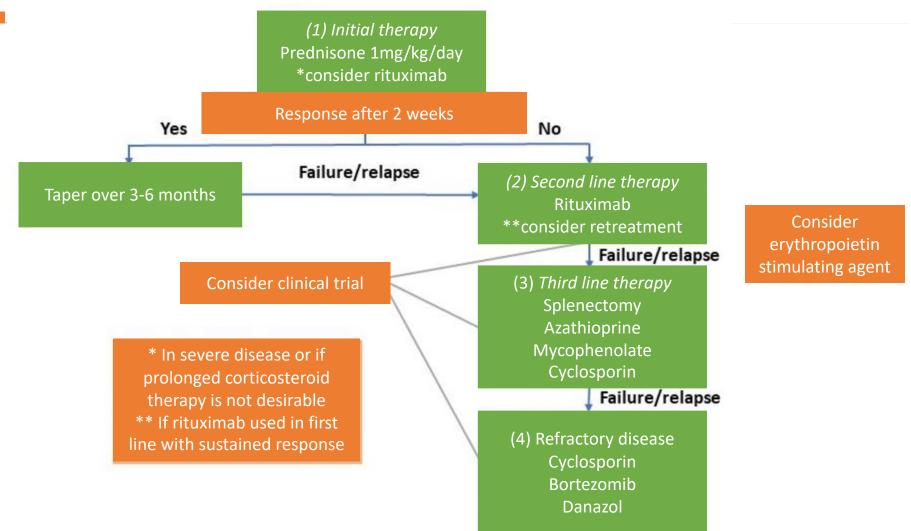
Mixed AIHA

CAD

#### **Risk of relapse**



|     |              | • • •          |              |           | r I |        |           | •               | $\boldsymbol{c}$ |           |  |
|-----|--------------|----------------|--------------|-----------|-----|--------|-----------|-----------------|------------------|-----------|--|
| hak | nrocontation | N ACCACIATAD N | uth incroace | d rick of |     | lo rol | ancoc and | l requirement o | tlorma           | hro thora |  |
|     | DIESEINATION |                |              |           |     |        |           |                 |                  |           |  |
|     |              |                |              |           |     |        |           |                 |                  |           |  |
|     |              |                |              |           |     |        |           |                 |                  |           |  |


Barcellini W et al. Am J Hematol. 2018; 93: E243-E246. Barcellini W et al. Blood. 2014; 6: 2930-2936. Tables and figures provided by authors.

|                                           | wanta (        | 11-2257        | CAD            | WILKEU AILIA   | Atypical AlliA |  |
|-------------------------------------------|----------------|----------------|----------------|----------------|----------------|--|
|                                           | lgG (n=158)    | lgG+C (n=67)   | (n=107)        | (n=24)         | (n=22)         |  |
| Median Age at diagnosis (yrs, range)      | 67 (5-94)      | 65 (21-92)     | 70 (28-94)     | 61 (20-86)     | 45 (25-78)     |  |
| Hb (g/dL), median (range)                 | 7.3 (2.1-14.1) | 6.5 (2.0-11.5) | 8.2 (4.0-13.5) | 6.4 (4.3-10.7) | 6.6 (3.0-10.9) |  |
| LDH (ULN), median (range)                 | 1.7 (0.6-26.7) | 1.8 (0.8-7.2)  | 1.4 (0.3-12.2) | 1.7 (0.6-9.8)  | 2 (0.7-18.1)   |  |
| Ret (x10 <sup>9</sup> /L), median (range) | 180 (22-644)   | 143 (53-641)   | 123 (13-644)   | 181 (45-576)   | 195 (29-780)   |  |
| inadequate reticulocytosis, n of pts (%)  | 86 (54)        | 35 (52)        | 69 (64)        | 15 (62)        | 14 (64)        |  |
| Therapy                                   |                |                |                |                |                |  |
| No therapy (%)                            | 8 (5)          | 1 (1)          | 23 (22)        | 0 (0)          | 1 (5)          |  |
| 1 line of therapy, n of pts (%)           | 150 (95)       | 66 (98)        | 84 (79)        | 24 (100)       | 21 (95)        |  |
| 2 lines of therapy, n of pts (%)          | 60 (38)        | 39 (58)        | 51 (53)        | 16 (67)        | 8 (36)         |  |
| 3 lines of therapy, n of pts (%)          | 23 (15)        | 13 (19)        | 26 (24)        | 8 (33)         | 5 (22)         |  |
| 4 or more lines of therapy, n of pts (%)  | 6 (4)          | 2 (3)          | 10 (9)         | 2 (8)          | 2 (9)          |  |
| Complications                             |                |                |                |                |                |  |
| Infections, n of pts (%)                  | 21 (13)        | 17 (25)        | 9 (8)          | 4 (17)         | 1 (5)          |  |
| Thrombosis, n of pts (%)                  | 21 (13)        | 18 (27)        | 14 (13)        | 1 (4)          | 4 (18)         |  |
| Acute renal failure, n of pts (%)         | 5 (3)          | 3 (4)          | 1 (1)          | 1 (4)          | 1 (4)          |  |
| Evans syndrome, n of pts (%)              | 11 (7)         | 5 (7)          | 1 (1)          | 4 (17)         | 2 (9)          |  |
| Death, n of pts (%)                       | 31 (19)        | 10 (15)        | 25 (23)        | 7 (29)         | 2 (9)          |  |
| Death for AIHA, n of pts (%)              | 5 (3)          | 2 (3)          | 3 (3)          | 3 (13)         | 0 (0)          |  |

wAIHA (n=225)

## Treating wAIHA

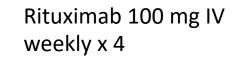
# Treatment of wAIHA

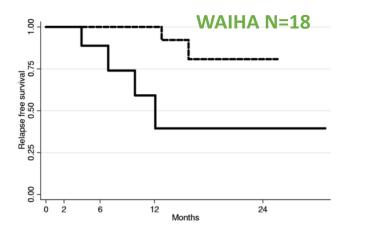


Murakhovskaya I. J Clin Med. 2020; 9: 4034.

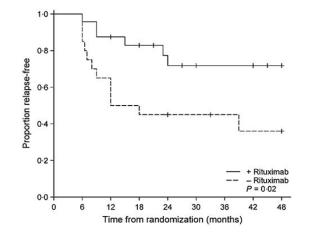
#### Steroids in wAIHA

- Prednisone: 1.0 to 2 mg/kg/day or 60-100 mg/day
- Maintain starting dose for at least 2 weeks and until Hgb >10 g/dL
  - reached in up to 80% of patients within 2 to 3 weeks
- Taper by 20 mg/wk over 4-6 wks until 20 mg daily, then slower taper 5mg/month (total duration of steroid therapy 4-6mo)
  - Relapse more common if steroids tapered to ≤10 mg in < 2 mo and if stopped in < 6 mo
- Goal hgb <u>></u> 10 g/dL with prednisone < 10mg/day by 3 mo after treatment</li>
- Patients who remain in remission after discontinuing prednisone: 20 30%
- Second line therapy should be considered if:
  - No response to 1 mg/kg/day after 3 weeks
  - Relapse during or after steroid taper

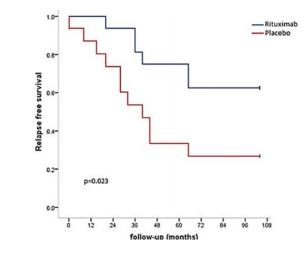

Crowther M et al. *Blood.* 2011; 118: 4036-4040. Lechner K, Jäger U. *Blood.* 2010; 116: 1831-1838. Barcellini W et al. *Blood.* 2014; 124: 2930-2936. Roumier M et al. *Am J Hematol.* 2014; 89: E150-E155. Dussadee K, et al *J Med Assoc Thai.* 2010; 93 Suppl 1: S165-S170.


## Rituximab for Relapsed/Refractory wAIHA

| Retrospective trials of ritux                | imab in R/R wAl  | НА                 |                  |                                                    |                                                                                                                                      |
|----------------------------------------------|------------------|--------------------|------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| First Author (Year)                          | Number of<br>Pts | Splenectomy<br>(N) | ORR/CR (%)       | Duration of Response (mo)                          | Comment                                                                                                                              |
| Narat (2006)                                 | 11               | 5                  | 64/27            | 2-20                                               |                                                                                                                                      |
| D'Arena (2007)                               | 11               | 1                  | 100/73           | 1-96+                                              | All primary AIHA pts received 3 additional monthly doses of maintenance rituximab; 1 additional pt had rituximab retreatment for ITP |
| Bussone (2009)                               | 27               | 6                  | 93/30            | NR                                                 | 5 (18%) relapses after median f/u 20.9 mo, 3 retreated with rituximab and responded                                                  |
| Dierickx (2009)                              | 36               | 10                 | 83/50            | 1 yr PFS 72%<br>2 yr PFS 56%                       |                                                                                                                                      |
| Penaiver (2010)                              | 27               | 13                 | 77/61            | Duration of response > 6 mo in<br>pts in CR        |                                                                                                                                      |
| Maung (2013)                                 | 34               | 3                  | 71/27            | 9-60                                               | 50% relapse; median time to next treatment 16.5 mo; 28.5% maintained response at 3 yrs                                               |
| Roumier (2014)                               | 25               | 2                  | 80/NR            | 50% relapse after mean of 14 mo<br>± 8             | 62% secondary wAIHA                                                                                                                  |
| Barcellini (2014)                            | 32               | NR                 | 81/56            |                                                    | Primary AIHA only; low dose rituximab                                                                                                |
| Jaime-Perez (2019)<br>First-line<br>Relapsed | 18<br>8          | N/A<br>7           | 100/83<br>100/63 | Median 16.5<br>Mean maintained response 82 ±<br>18 | Low dose rituximab + high dose dexamethasone (40 mg/day) fo<br>4 days                                                                |

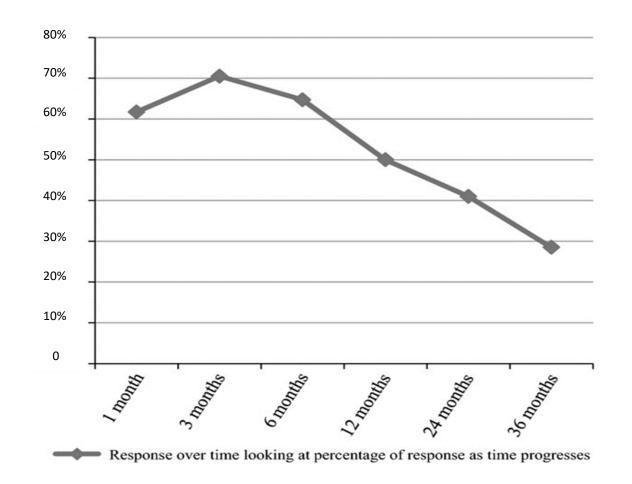

Murakhovskaya I. J Clin Med. 2020; 9: 4034.

#### Rituximab: What dose?






Rituximab 375 mg/m<sup>2</sup> weekly x 4




Rituximab 1000 mg, on day 1, 15

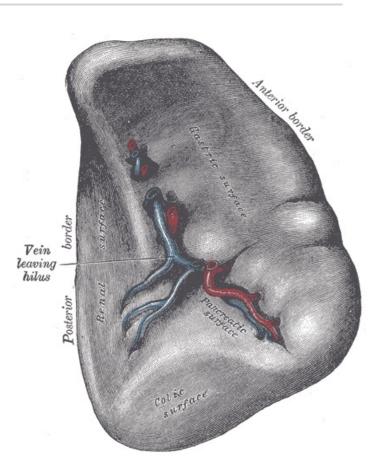


Barcellini W et al. *Blood.* 2012; 119; 3691-3697. Birgens H et al. *Br J Haematol.* 2013; 163; 393-399. Michel M et al. *Am J Hematol.* 2017; 92: 23-27

## Percentage of patients responding to rituximab over time



• Median time to response: 4 - 6wks


- Responses within the first week seen
- 87.5% response within 4 wks, 100% response by 3 months.
- Relapse at 1 2 years 25 -50%

Maung S et al. Br J Haematol. 2013; 163; 118-122.

### Splenectomy

- Response 60-70%; long-term remission ~20%
- Surgical mortality rate of 0.8%
- Infectious complications:
  - Overwhelming sepsis 3-5% with mortality rate 50%
    - Even with vaccinations
- Thrombotic events
  - 1.86% risk within 90 days HR 3.2
  - 1.9% risk within 1 year HR 2.8

Lechner K, Jäger U. *Blood.* 2010; 116: 1831-1838. Thomsen RW et al *Ann Intern Med.* 2009; 151: 546-555. Roumier M et al *Am J Hematol.* 2014; 89: E150-E155. Balagué C et al *Surg Endosc.* 2004; 18: 1931-1933. Thomsen RW et al *J Thromb Haemost.* 2010; 8: 1413-1416.



| Treatment        | Dose schedule                                                | Response rate                                         | Time to<br>response | Comments                                                                                                                                                                                                                                         | Side effects/cons                                                                                                                                                                                                                                                      |
|------------------|--------------------------------------------------------------|-------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prednis(lo)ne    | 1-2 mg/kg/day for 3-4<br>weeks                               | 80-90% (estimated cure rate 20-30%)                   | 7-25 days           | Gradual tapering during a period no shorter than 4-6<br>months<br>Steroid boluses may be used for acute severe forms (i.e.,<br>methylprednisone 250 mg iv daily for 3 days)                                                                      | Diabetes mellitus, hypertension, peptic ulcer, osteoporosis, adrenal<br>suppression, myopathy, psychosis, delayed wound healing, insomnia,<br>menstrual irregularity, weight gain                                                                                      |
| Rituximab        | 375 mg/sqm/wk for 4<br>weeks                                 | ~80% (relapse free<br>survival of ~60% at 3<br>years) | 3-6 weeks           | <ul> <li>Other schedules include:</li> <li>Low dose (100 mg weekly for 4 weeks) in pts with non-severe hemolytic anemia and in the elderly</li> <li>1 g Day 1 and 15, particularly in wAIHA associated with other autoimmune diseases</li> </ul> | Infusion reactions, late-onset neutropenia, hypo-gammaglobulinemia, reactivation of underlying infections (HBV, HCV, HIV, tuberculous, etc.)                                                                                                                           |
| Splenectomy      |                                                              | ~80%<br>(curative rate 20-<br>50%)                    | 7-10 days           | Discouraged in pts older than 65-70 years, with<br>cardiopulmonary disorders, thrombotic risk,<br>immunodeficiencies, lymphoproliferative diseases, and<br>systemic autoimmune diseases                                                          | Possible complications include serious infectious (vaccinations<br>warranted against Neisseria meningitidis ACWY and B type,<br>pneumococcal, and Haemophilus influenzae type B; annual flu vaccine,<br>variable schedule for 5 yearly boosters) and thrombotic events |
| Azathioprine     | 2-4 mg/kg/day                                                | ~60% (usually with steroids)                          | 1-3 months          | Advised as steroid sparing agent in AIHAs secondary to systemic autoimmune conditions, inflammatory bowel diseases, and autoimmune hepatitis                                                                                                     | Myelotoxicity, particularly in case of thiopurine methyltransferase deficiency (start with 50 mg daily, increase up to 150 mg in absence of neutropenia), liver toxicity                                                                                               |
| Cyclosporine     | 2.5 mg/kg twice daily                                        | ~60%                                                  | 1-3 months          | Advised as steroid sparing agent, particularly in AIHA<br>secondary to autoimmune conditions, Evan's syndrome,<br>and in case of features of bone marrow failure                                                                                 | Kidney damage, hypertension, infections, nausea, excessive hair growth                                                                                                                                                                                                 |
| Cyclophosphamide | 50-100 mg/day or 800<br>mg/sqm IV monthly for 4-<br>5 cycles | 50-70%                                                | 2-6 weeks           | May be considered in highly hemolytic disease, particularly<br>if secondary to connective tissue disorders and<br>lymphoproliferative diseases                                                                                                   | Myelosuppression, infections, urotoxicity, secondary malignancy, teratogenicity, and infertility                                                                                                                                                                       |
| Mycophenolate    | 500 mg twice daily                                           | 25-100%<br>(small case series)                        | 1-3 months          | Mainly used in the pediatric setting                                                                                                                                                                                                             | Nausea, headache, diarrhea                                                                                                                                                                                                                                             |

| Treatment     | Dose schedule                  | Response<br>rate                             | Time to response | Comments                                                                                                                                                                          | Side effects/cons                                                                                                                                                                       |
|---------------|--------------------------------|----------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prednis(lo)ne | 1-2 mg/kg/day<br>for 3-4 weeks | 80-90%<br>(estimated<br>cure rate<br>20-30%) | 7-25 days        | Gradual tapering during a period<br>no shorter than 4-6 months<br>Steroid boluses may be used for<br>acute severe forms (i.e.,<br>methylprednisone 250 mg iv daily<br>for 3 days) | Diabetes mellitus, hypertension, peptic<br>ulcer, osteoporosis, adrenal<br>suppression, myopathy, psychosis,<br>delayed wound healing, insomnia,<br>menstrual irregularity, weight gain |

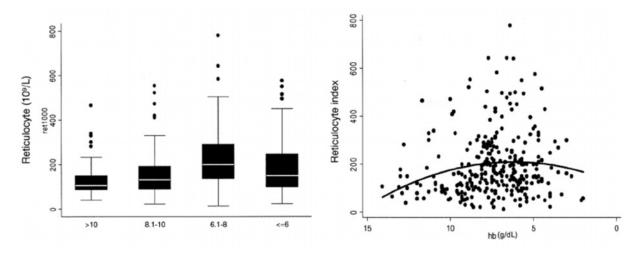
| Treatment | Dose schedule                   | Response<br>rate                                               | Time to response | Comments                                                                                                                                                                                                                                         | Side effects/cons                                                                                                                                         |
|-----------|---------------------------------|----------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rituximab | 375<br>mg/sqm/wk<br>for 4 weeks | ~80%<br>(relapse<br>free<br>survival of<br>~60% at 3<br>years) | 3-6 weeks        | <ul> <li>Other schedules include:</li> <li>Low dose (100 mg weekly for 4 weeks) in pts with non-severe hemolytic anemia and in the elderly</li> <li>1 g Day 1 and 15, particularly in wAIHA associated with other autoimmune diseases</li> </ul> | Infusion reactions, late-onset<br>neutropenia, hypo-<br>gammaglobulinemia, reactivation of<br>underlying infections (HBV, HCV, HIV,<br>tuberculous, etc.) |

| Treatment   | Dose schedule | Response<br>rate                      | Time to response | Comments                                                                                                                                                                                       | Side effects/cons                                                                                                                                                                                                                                                               |
|-------------|---------------|---------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Splenectomy |               | ~80%<br>(curative<br>rate 20-<br>50%) | 7-10 days        | Discouraged in pts older than 65-<br>70 years, with cardiopulmonary<br>disorders, thrombotic risk,<br>immunodeficiencies,<br>lymphoproliferative diseases, and<br>systemic autoimmune diseases | Possible complications include serious<br>infectious (vaccinations warranted<br>against Neisseria meningitidis ACWY<br>and B type, pneumococcal, and<br>Haemophilus influenzae type B; annual<br>flu vaccine, variable schedule for 5<br>yearly boosters) and thrombotic events |

| Treatment    | Dose schedule | Response<br>rate                      | Time to response | Comments                                                                                                                                                 | Side effects/cons                                                                                                                                                                    |
|--------------|---------------|---------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Azathioprine | 2-4 mg/kg/day | ~60%<br>(usually<br>with<br>steroids) | 1-3<br>months    | Advised as steroid sparing agent<br>in AIHAs secondary to systemic<br>autoimmune conditions,<br>inflammatory bowel diseases,<br>and autoimmune hepatitis | Myelotoxicity, particularly in case of<br>thiopurine methyltransferase deficiency<br>(start with 50 mg daily, increase up to<br>150 mg in absence of neutropenia),<br>liver toxicity |

| Treatment    | Dose schedule            | Response<br>rate | Time to<br>response | Comments                                                                                                                                                               | Side effects/cons                                                            |
|--------------|--------------------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Cyclosporine | 2.5 mg/kg<br>twice daily | ~60%             | 1-3<br>months       | Advised as steroid sparing agent,<br>particularly in AIHA secondary to<br>autoimmune conditions, Evan's<br>syndrome, and in case of features<br>of bone marrow failure | Kidney damage, hypertension,<br>infections, nausea, excessive hair<br>growth |

| Treatment        | Dose schedule                                                      | Response<br>rate | Time to response | Comments                                                                                                                                             | Side effects/cons                                                                                      |
|------------------|--------------------------------------------------------------------|------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Cyclophosphamide | 50-100<br>mg/day or 800<br>mg/sqm IV<br>monthly for 4-<br>5 cycles | 50-70%           | 2-6 weeks        | May be considered in highly<br>hemolytic disease, particularly if<br>secondary to connective tissue<br>disorders and<br>lymphoproliferative diseases | Myelosuppression, infections,<br>urotoxicity, secondary malignancy,<br>teratogenicity, and infertility |


| Treatment     | Dose schedule         | Response<br>rate                  | Time to<br>response | Comments                             | Side effects/cons          |
|---------------|-----------------------|-----------------------------------|---------------------|--------------------------------------|----------------------------|
| Mycophenolate | 500 mg twice<br>daily | 25-100%<br>(small case<br>series) | 1-3<br>months       | Mainly used in the pediatric setting | Nausea, headache, diarrhea |

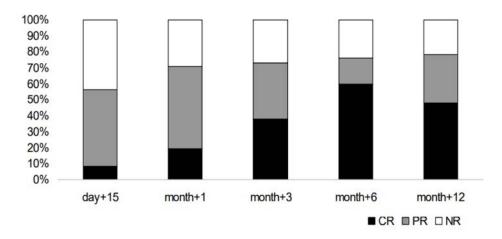
### Erythropoietin in AIHA

Predictors of refractoriness to therapy and healthcare resource utilization in 378 patients with primary autoimmune hemolytic anemia from eight Italian reference centers

Wilma Barcellini MD 🔀, Anna Zaninoni BS, Bruno Fattizzo MD, Juri Alessandro Giannotta MD, Monia

#### Absolute reticulocyte count as a function of hemoglobin at onset

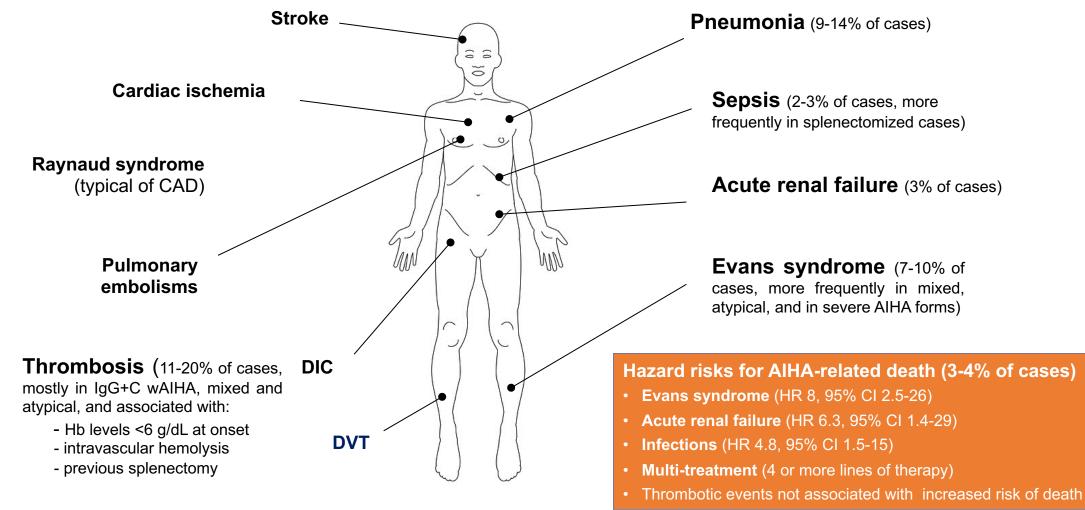



- Reticulocytopenia in 20% adults and 39% children
- Inadequate reticulocytosis in > 50% patients, particularly with Hgb < 6g/dL</li>

Barcellini W et al. *Am J Hematol.* 2018; 93: E243-E246. Figure used with permission from Author. Fattizzo B et al. *Haematologica* 2021; 106: 622-625. Creative commons figure.

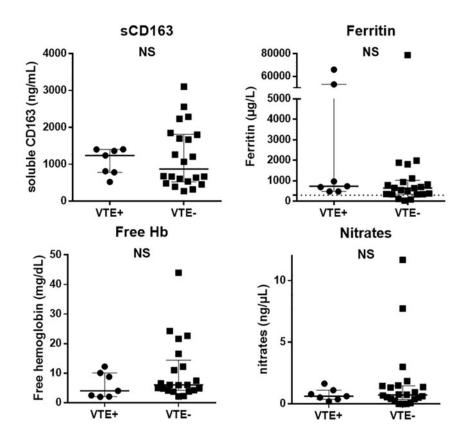
Efficacy of recombinant erythropoietin in autoimmune hemolytic anemia: a multicenter international study

Bruno Fattizzo, Marc Michel, Anna Zaninoni, Juri Giannotta, Stephanie Guillet, Henrik Frederiksen, Josephine M.I. Vos,


#### **Response to erythropoietin**



- 48 cases AIHA treated for a median of 7 months
- Epo α 40,000 U/wk or Darbepoetin α 20-300 mcg/wk
- Response ~70% in refractory AIHA
  - Esp severe anemia, low endogenous epo, use early in disease


## Complications

#### AIHA: Potential Life-Threatening Complications

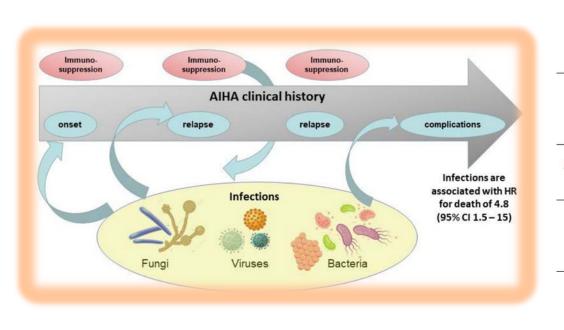


Barcellini W et al. Expert Rev Clin Immunol. 2018; 14: 857-872.

#### Thrombosis and wAIHA



#### **Thrombotic events 11-20% of patients**


Lecouffe-Desprets M, et al *Autoimmun Rev.* 2015; 14: 1023-1028. Barcellini W et al. *Blood. 2014;* 124: 2930-2936. Audia S et al *PLoS One.* 2018; 13: 3020718 Berentsen S, Barcellini W. *N Engl J Med.* 2021; 385: 1407-1419.

# Cumulative incidence of thrombosis (continuous line) and of mortality (dashed line).

Thrombotic Events in 30 of 287 Patients with AIHA

#### Infections

#### Infections may trigger AIHA reactivations but may also be consequent to long-term immunosuppressive therapy



| Pathogen                      | Screening Test                                                                      | <b>Risk Factors</b>                                                                       | Prophylaxis                                                                                                                                                                   |
|-------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HBV                           | HBsAg, antiHBs, antiHBc,<br>antiHBe, HBeAg, HBV-DNA<br>when indicated               | Steroids<br>Rituximab<br>Immunosuppressors<br>Bortezomib                                  | - Lamivudine, entecavir,<br>tenofovir or pre-emptive<br>therapy according to EASL<br>or AGA guidelines<br>- HBV vaccination of<br>seronegative patients                       |
| HCV                           | Anti-HCV (HCV-RNA if<br>Ab positive)                                                | Long-term steroids<br>Rituximab                                                           | - No drugs approved for<br>prophylaxis<br>- Eradication therapy in<br>HCV-RNA+                                                                                                |
| Mycobacterium<br>tuberculosis | tuberculin skin test or serum<br>interferon gamma<br>release assays +/- chest X-ray | Long-term steroids                                                                        | Isoniazid (or rifampicin) in<br>latent TB, polichemotherapy<br>in active TB                                                                                                   |
| Pneumocystis<br>jirovecii     | No screening tests available                                                        | Steroids >10 mg/day + age<br>>65 or pulmonary disease<br>or therapy with<br>rituximab/CTX | TMP-SMX (atovaquone,<br>pentamidine, dapsone if not<br>tolerated/contraindicated)                                                                                             |
| Encapsulated<br>bacteria      | No screening tests available                                                        | Splenectomy<br>Complement inhibitors                                                      | <ul> <li>ACWY and B group<br/>meningococcal vaccines</li> <li>23-valent and 13-valent<br/>pneumococcal vaccines</li> <li>Haemophilus influenzae<br/>type B vaccine</li> </ul> |

| Pathogen                      | Screening Test                                                                       | <b>Risk Factors</b>                                                                       | Prophylaxis                                                                                                                                                                       |
|-------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HBV                           | HBsAg, antiHBs, antiHBc,<br>antiHBe, HBeAg, HBV-DNA<br>when indicated                | Steroids<br>Rituximab<br>Immunosuppressors<br>Bortezomib                                  | <ul> <li>Lamivudine, entecavir,<br/>tenofovir or pre-emptive<br/>therapy according to EASL<br/>or AGA guidelines</li> <li>HBV vaccination of<br/>seronegative patients</li> </ul> |
| HCV                           | Anti-HCV (HCV-RNA if<br>Ab positive)                                                 | Long-term steroids<br>Rituximab                                                           | <ul> <li>No drugs approved for<br/>prophylaxis</li> <li>Eradication therapy in<br/>HCV-RNA+</li> </ul>                                                                            |
| Mycobacterium<br>tuberculosis | tuberculin skin test or serum<br>interferon gamma<br>release assays +/ – chest X-ray | Long-term steroids                                                                        | Isoniazid (or rifampicin) in<br>latent TB, polichemotherapy<br>in active TB                                                                                                       |
| Pneumocystis<br>jirovecii     | No screening tests available                                                         | Steroids >10 mg/day + age<br>>65 or pulmonary disease<br>or therapy with<br>rituximab/CTX | TMP-SMX (atovaquone,<br>pentamidine, dapsone if not<br>tolerated/contraindicated)                                                                                                 |
| Encapsulated<br>bacteria      | No screening tests available                                                         | Splenectomy<br>Complement inhibitors                                                      | <ul> <li>ACWY and B group<br/>meningococcal vaccines</li> <li>23-valent and 13-valent<br/>pneumococcal vaccines</li> <li>Haemophilus influenzae<br/>type B vaccine</li> </ul>     |

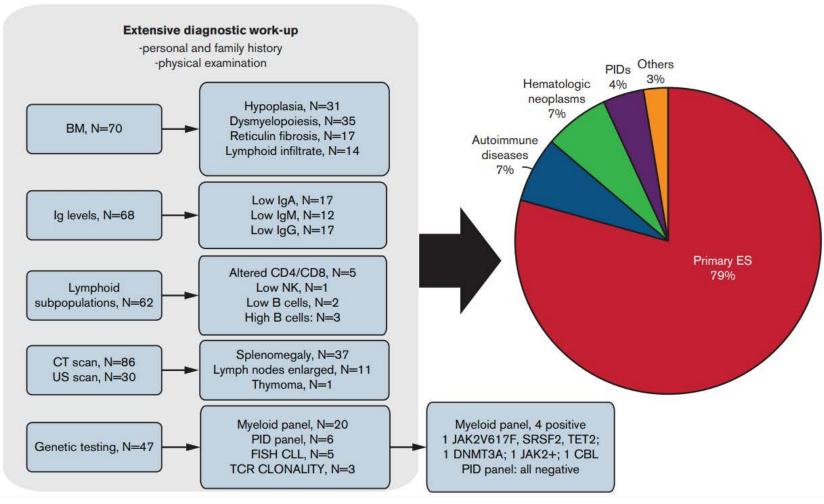
#### Evans Syndrome

- Evans syndrome (ES) is a rare disease characterized by the association of multiple autoimmune cytopenias, usually AIHA and immune thrombocytopenia (ITP) (and occasionally autoimmune neutropenia)
- Risk factors for developing ES: infections, malignancies, autoimmune diseases, recent vaccinations, drugs or a **family history** of immune disorders
- Clinical features: palor, weakness, fatigue, jaundice, petechiae, ecchymosis, gingivorrhagia and epistaxis. Risk of 66.6% of patients developing respiratory tract infections (prolonged immunosuppressive therapy +associated underlying immune deficit)

In adult patients, Michel et al. have shown that ES was a secondary condition in 56% of cases (mainly as a results of malignancies and autoimmune diseases)

Evans R et al, AMA Arch Intern Med. 1951; 87: 48-65. Michel M et al. Blood. 2009; 114: 3167-3172. Fattizzo B et al. Blood Adv. 2021; 5: 5468-5478.

#### Evans Syndrome

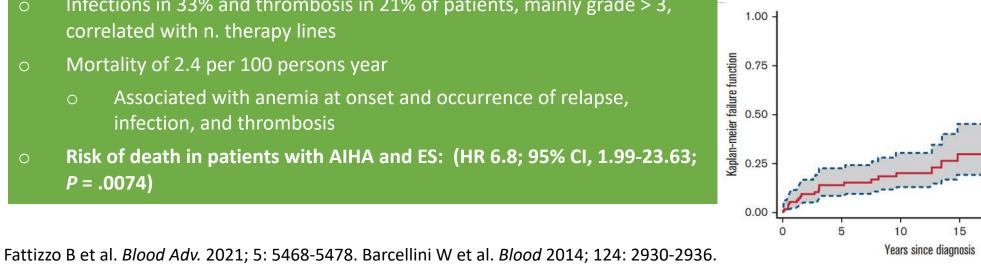

#### Diagnosis

- Exhaustive **clinical history** including risk factors for developing ES: infections, malignancies, autoimmune diseases, recent vaccinations, drugs or a **family history** of immune disorders
- Thorough physical examination focused on signs of anemia or thrombocytopenia
- Complete blood count and smear
- Markers of hemolysis
- Positive direct anti-human globulin test (DAT) test confirming ongoing immune hemolysis
- Additional studies
  - Antibodies against platelets  $\rightarrow$  35% of individuals, mostly type anti-IIb-IIIa
  - Anti-granulocyte antibodies
  - Others to identify connectivitis, LAC, ACA, anti-beta2 glycoprotein 1 if history of thrombosis

#### Primary ES is a diagnosis of exclusion and secondary ES must be searched because treatment and responses are different!

Evans R et al, AMA Arch Intern Med 1951; 87: 48-65. Michel M et al. Blood. 2009; 114: 3167-3172. Fattizzo B et al. Blood Adv. 2021; 5: 5468-5478.

#### Evans Syndrome: Primary vs Secondary




Fattizzo B et al. Blood Adv 2021; 5: 5468-5478.

#### Evans Syndrome: Risk of Thrombosis, Relapse, Death

#### Bleeding occurred in 42% of patients 0

- Mainly low grade and at ITP onset
- All patients received first-line steroids+/- IVIG 0
- 23% needed early additional therapy "primary refractoriness" 0
- 2<sup>nd</sup> line included rituximab, splenectomy, immunosuppressants, 0 thrombopoietin receptor agonists, and others, with response rates > 80%
- 70% relapsed and 54% required > 3 therapy lines 0
- Infections in 33% and thrombosis in 21% of patients, mainly grade > 3, 0 correlated with n. therapy lines
- Mortality of 2.4 per 100 persons year 0
  - Associated with anemia at onset and occurrence of relapse, infection, and thrombosis
- Risk of death in patients with AIHA and ES: (HR 6.8; 95% CI, 1.99-23.63; 0 P = .0074)



1.00

0.75

0.50

0.25

0.00

0

5

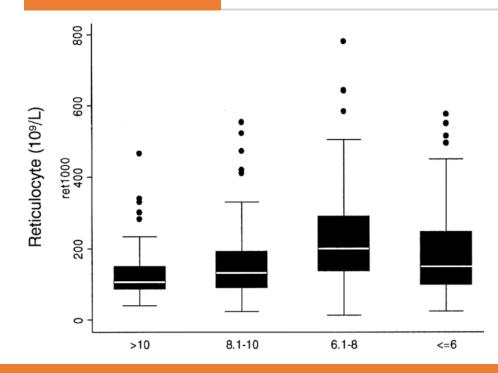
15

20

20

25

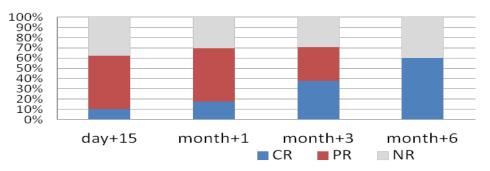
10


Years since diagnosis

Relapse ---- Infection ...... Thrombosis

25

Cumulative incidence


#### Reticulocytopenia: A Medical Emergency



- Reticulocytopenia is present in 20% of adults and 39% of children
- Reticulocytopenia is present in severe cases
- Due to autoimmune reaction against BM erythroid? precursors?



Evidence Based Use of Erythropoietin in Patients with Autoimmune Hemolytic Anemia: A Multicenter International Study



rEPO (i.e. epoetin alpha 40,000 IU/week sc)→ 70% ORR associated with:

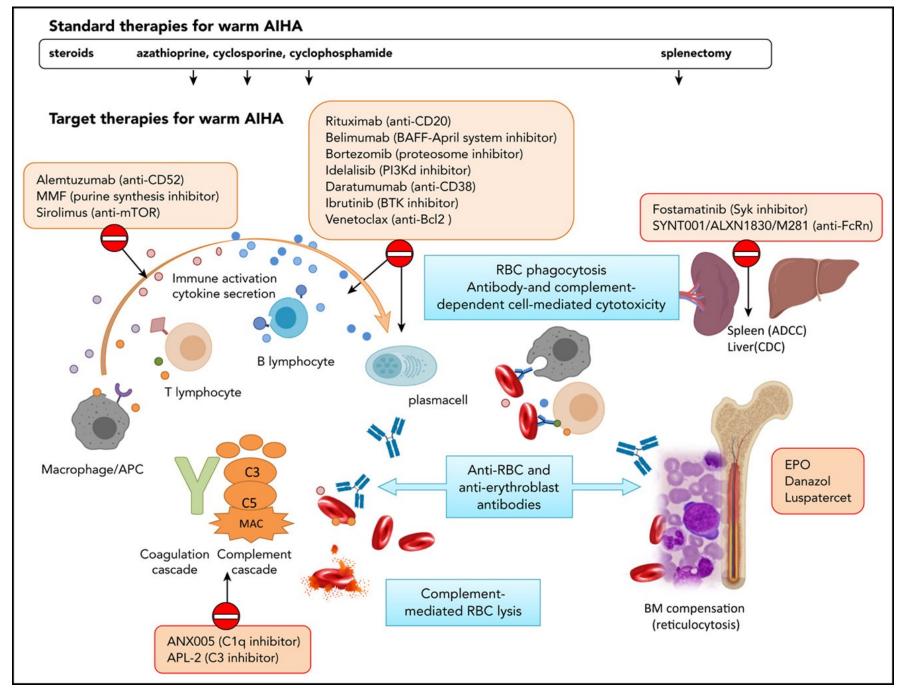
- primary AIHA (73% vs 33% in secondary)
- inadequate reticulocytosis (76% vs 50% with adequate reticulocytosis)

Liesveld JL et al. *Blood*. 1987; 69: 820-826. Aladjidi N et al. *Haematologica*. 2011: 96: 655-663. Barcellini W et al. *Blood*. 2014; 6: 2930-2936. Barcellini W et al. Am J Hematol. 2018; 93: E243-E246. Fattizzo B et al. *Haematologica*. 2021; 106: 622-625.

# AIHA in ICU: diagnostic delay (i.e. warm IgM and DAT negative) and high mortality

Characteristics and outcome of adults with severe autoimmune hemolytic anemia admitted to the intensive care unit: Results from a large French observational study

Clara Pouchelon, Charlotte Lafont, Antoine Lafarge, Thibault Comont, Etienne Riviere, David Boutboul, Claire Fieschi, Antoine Dossier, Sylvain Audia, Julien Vaidie, Marc Ruivard ... See all authors 🗸


First published: 24 July 2022 | https://doi.org/10.1002/ajh.26665

- 62 patients (median age 55 years)
- mostly warm (79%), newly diagnosed (69.3%),
- secondary AIHA (64.5%).
- Median hemoglobin level 4.3 g/dL [3.7–5.1];
- 92% of patients had a low (< 121) BMRI.
- Despite enoxaparin 9.7% DVT
- 16% severe infectious
- 8 (12.9%) patients died after a median of 3.5 [1–9] days
- 90.3% required transfusions  $\rightarrow$  1.5 units per day [1.0–2.5].
- **Recombinant erythropoietin** was given to 14 (22.6%) patients.
- 16.1% IV Ig and 8.1% plasma exchange.

|                                                                      | <b>Clinical presentation</b>                                                      | Diagnostic issues                                                                       | Therapeutic hints                                                                                                        |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| AIHA in the intensive<br>care unit<br>0.05% of primary AIHA<br>cases | Very severe anemia<br>Massive hemolysis<br>Unresponsiveness to transfusion<br>MOF | Factors associated with severity are concomitant ITP, severe infections, and thrombosis | Intensive support with transfusion, along<br>with steroid boli, iv Ig, rituximab,<br>erythropoietin, and plasma-exchange |

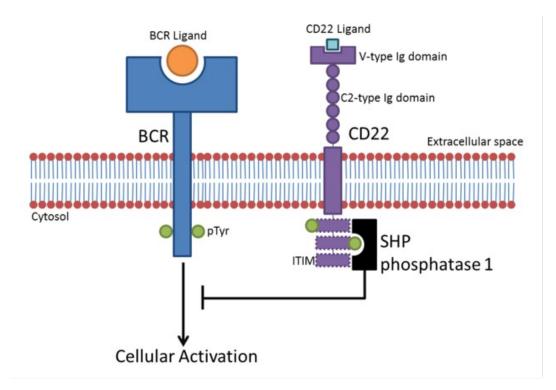
Pouchelon C et al. Am J Hematol. 2022; 97: E371-E373.

# Treatments in Development



Barcellini W, Fattizzo B, Blood. 2021; 137: 1283-1294.

| Drug/Class                                           | Mechanism                                             | Indication                 | Study                 |  |  |
|------------------------------------------------------|-------------------------------------------------------|----------------------------|-----------------------|--|--|
| Monoclonal Antibodies                                |                                                       |                            |                       |  |  |
| Alemtuzumab                                          | Anti-CD52                                             | Secondary AIHA             | Case reports          |  |  |
| Daratumumab                                          | Anti-CD38                                             | HSCT-AIHA                  | Case reports          |  |  |
| Ofatumumab                                           | Anti-CD20                                             | Secondary AIHA             | Case reports          |  |  |
| Ianalumab                                            | Anti-BAFF                                             | Primary of secondary wAIHA | Phase 3               |  |  |
| Povetacicept                                         | Anti-APRIL/BAFF                                       | Primary wAIHA, CAD, ITP    | Phase 1b              |  |  |
| Obexelimab                                           | Anti-CD19                                             | Primary or secondary wAIHA | Phase 3               |  |  |
| <b>B-cell receptor pathway and Fc</b> $\gamma R$ sig | B-cell receptor pathway and FcγR signaling inhibitors |                            |                       |  |  |
| Ibrutinib                                            | ВТКі                                                  | Secondary AIHA             | Case reports          |  |  |
| Rilzabrutinib                                        | ВТКі                                                  | Primary, secondary wAIHA   | Phase 2               |  |  |
| Venetoclax                                           | Bcl2                                                  | Secondary AIHA             | Case reports          |  |  |
| IgG-mediated Phagocytosis Inhibitors                 |                                                       |                            |                       |  |  |
| Fostamatinib                                         | Syk inhibitor                                         | wAIHA                      | Phase 2,3             |  |  |
| Sovleplenib                                          | Syk inhibitor                                         |                            | Phase 2/3             |  |  |
| Nipocalimab                                          | FcRn MoAB                                             | wAIHA                      | Phase 2/3             |  |  |
| Orilanolimab                                         | FcRn MoAB                                             | wAIHA                      | Phase 2               |  |  |
| Complement inhibitors                                |                                                       |                            |                       |  |  |
| Annexion-005                                         | C1q inhibitor                                         | wAIHA, CAD                 | Phase 1/2             |  |  |
| Eculizumab                                           | C5 inhibitor                                          | CAD/Mixed AIHA             | Case reports, Phase 2 |  |  |
| Pegcetacoplan                                        | C3/C3b inhibitor                                      | wAIHA, CAD                 | Phase 1/2             |  |  |
| Bortezomib                                           | Proteosome Inhibitor                                  | WAIHA, CAD                 | Case reports, Phase 2 |  |  |


| Drug/Class            | Mechanism       | Indication                 | Study        |  |
|-----------------------|-----------------|----------------------------|--------------|--|
| Monoclonal Antibodies |                 |                            |              |  |
| Alemtuzumab           | Anti-CD52       | Secondary AIHA             | Case reports |  |
| Daratumumab           | Anti-CD38       | HSCT-AIHA                  | Case reports |  |
| Ofatumumab            | Anti-CD20       | Secondary AIHA             | Case reports |  |
| lanalumab             | Anti-BAFF       | Primary of secondary wAIHA | Phase 3      |  |
| Povetacicept          | Anti-APRIL/BAFF | Primary wAIHA, CAD, ITP    | Phase 1b     |  |
| Obexelimab            | Anti-CD19       | Primary or secondary wAIHA | Phase 3      |  |

| Drug/Class                              | Mechanism      | Indication               | Study        |
|-----------------------------------------|----------------|--------------------------|--------------|
| B-cell receptor pathway and FcyR signal | ing inhibitors |                          |              |
| Ibrutinib                               | ВТКі           | Secondary AIHA           | Case reports |
| Rilzabrutinib                           | ВТКі           | Primary, secondary wAIHA | Phase 2      |
| Venetoclax                              | Bcl2           | Secondary AIHA           | Case reports |

| Drug/Class                           | Mechanism     | Indication | Study     |
|--------------------------------------|---------------|------------|-----------|
| IgG-mediated Phagocytosis Inhibitors |               |            |           |
| Fostamatinib                         | Syk inhibitor | WAIHA      | Phase 2,3 |
| Sovleplenib                          | Syk inhibitor |            | Phase 2/3 |
| Nipocalimab                          | FcRn MoAB     | WAIHA      | Phase 2/3 |
| Orilanolimab                         | FcRn MoAB     | WAIHA      | Phase 2   |

| Drug/Class            | Mechanism            | Indication     | Study                 |
|-----------------------|----------------------|----------------|-----------------------|
| Complement inhibitors |                      |                |                       |
| Annexion-005          | C1q inhibitor        | wAIHA, CAD     | Phase 1/2             |
| Eculizumab            | C5 inhibitor         | CAD/Mixed AIHA | Case reports, Phase 2 |
| Pegcetacoplan         | C3/C3b inhibitor     | wAIHA, CAD     | Phase 1/2             |
| Bortezomib            | Proteosome Inhibitor | WAIHA, CAD     | Case reports, Phase 2 |

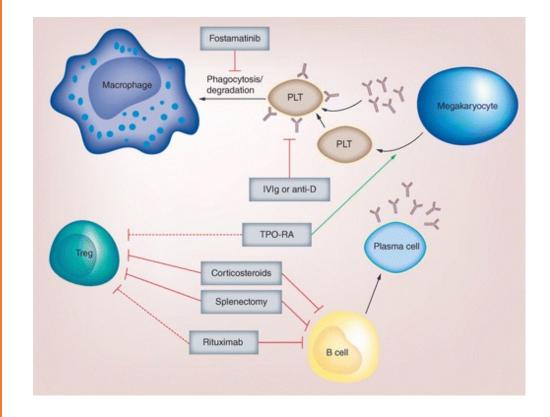
# BCR pathway



- Essential for normal B-cell development, selection, survival, proliferation, and differentiation into antibody-secreting cells.
- Dysregulation in congenital immunodeficiencies, autoimmunity, and leukemia and lymphoma
- $\odot$  Controlled by several key enzymes, PI3K\delta, Syk, and Btk, expression is limited mostly to hematopoietic cells and essential functions mostly in B-cells

Puri KD et al. Int Rev Immunol 2013; 32: 397-427.

Avalos Am et al. Adv Immunol. 2014; 123: 1-49.


"Schematic representation of the CD22 and B-cell receptor signalling process" https://creativecommons.org/licenses/by-sa/3.0/?ref=openverse.

### Syk inhibition

- Syk: cytoplasmic tyrosine kinase activated by binding of Ag to the BCR
  - Required for signaling downstream of the BCR
  - Activation leads to phosphorylation of Syk
  - FcγR phagocytosis of the antibody coated RBCs is dependent upon Syk signaling.

#### Syk inhibition:

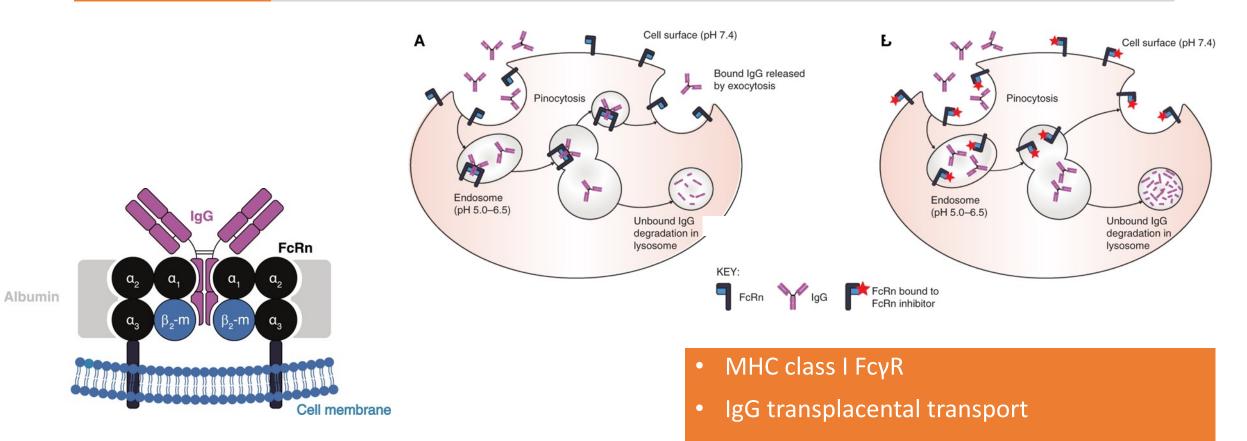
- blocks B-cell activation, reduces ability of B cells to serve as APCs to T-cells and elicit the T-cell help required for antibody secretion, antibody affinity maturation, and Ig class switching
- inhibits FcR-triggered, Syk-dependent cytoskeletal rearrangement during phagocytosis



Podolanczuk A et al. *Blood* 2009; 113: 3154-3160. Newland A et al. *Immunotherapy*. 2018; 10: 9-25. Creative commons figure

#### Fostamatinib

Phase 3, Randomized, Double-Blind, Placebo-Controlled, Global Study (FORWARD) of Fostamatinib for the Treatment of Warm Antibody Autoimmune Hemolytic Anemia


David J. Kuter, Caroline I. Piatek, Khalil Saikali, Wolfgang Dummer

- Approved for ITP April 17, 2018
- AIHA Orphan Drug designation
- FORWARD study is 24-week Phase 3 RCT (N=90)
- Primary endpoint: Hgb > 10 g/dL and ≥ 2 g/dL from baseline
- Overall response rate: 35.8% in fostamatinib group vs 26.7% in placebo group.
- Reanalysis: 33% in fostamatinib group vs 14.0% in placebo group. (Two patients removed from placebo group who did not have evidence of hemolysis)
- High placebo response rate observed (esp in Eastern Europeans)

| Regions                                                    | Durable hemoglob |               |          |
|------------------------------------------------------------|------------------|---------------|----------|
| Treatment group                                            | Fostamatinib     | Placebo       | p-value  |
| Overall population – prespecified analysis                 | 16/45 (35.6%)    | 12/45 (26.7%) | P=0.398  |
| Overall population, n (%)<br>– reanalysis                  | 15/45 (33.3%)    | 6/43 (14.0%)  | P=0.0395 |
| U.S., Canada, Australia,<br>Western Europe –<br>reanalysis | 8/25 (32.0%)     | 0/28 (0)      | P=0.021  |
| Eastern Europe –<br>reanalysis                             | 7/20 (34.0%)     | 6/15 (40.0%)  | NS       |

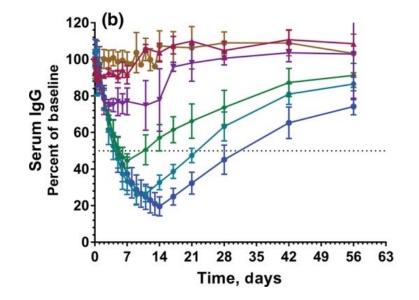
Kuter D et al. Blood. 2022; 140 (suppl 1): 2438-2439.

#### FcRn Inhibition

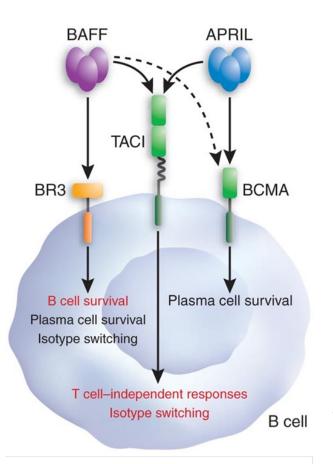


- IgG recycling and transport
- Albumin recycling and transport

Ling LE et al. Clin Pharmacol Ther. 2019; 105: 1031-1039. Patel DD, Bussel JB. J. Allergy Clin. Immunol. 2020; 146(3): 467-478.


## Nipocalimab

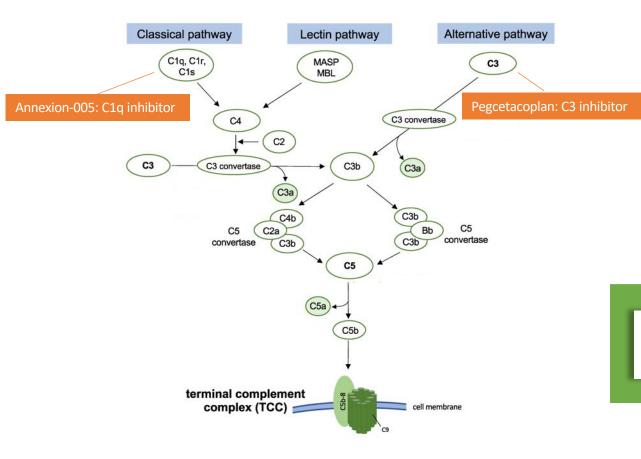
Energy Trial in Warm Autoimmune Hemolytic Anemia (wAIHA): Design of a Phase 2/3 Randomized, Double-Blind, Placebo-Controlled Study to Assess the Efficacy and Safety of Nipocalimab, an FcRn Blocker


Irina Murakhovskaya, Bruno Fattizzo, Tarek Ebrahim, Kristen Sweet, Cathye Shu

- AIHA Orphan Drug designation
- Vivacity-MG: Phase 2 trial in myasthenia gravis substantial and rapid reductions in serum total and pathogenic IgG autoantibodies which were correlated statistically significantly with symptom improvement (P<0.0001).</li>
- Open-label phase 2 UNITY trial positive results from the treatment of pregnant adults at high risk for severe hemolytic disease of the fetus and newborn (HDFN).
- ENERGY trial is 24-week Phase 2/3 RCT (N=111)
- Primary endpoint: durable response of improvement in Hgb
- Enrolment is ongoing.

Murakhovskaya I et al. *Blood.* 2022; 140 (suppl 1): 2443-2444. Murakhovskaya et al *EHA 2021, NORD 2021*. Figure provided by Author.




## **BAFF** inhibition



- BAFF-mediated signaling needed for B-cell maturation, proliferation, and survival
- Ianalumab:
  - Monoclonal antibody against the BAFF receptor
  - B cell depletion via direct lysis of B cells
  - BAFF receptor blockade
- Povetacicept:
  - inhibits of BAFF and a proliferation inducing ligand APRIL
  - Reduces Antibody-Secreting Cells

Bowman SJ et al. Lancet 2021; 399; 161-171. https://www.alpineimmunesciences.com/alpn-303/

#### Complement Inhibition in wAIHA



~20-50% wAIHA have complement involvement

 Complement involvement associated with lower hemoglobin and need for second- and third-line therapies

Inhibition of C3 with APL-2 Results in Normalisation of Markers of Intravascular and Extravascular Hemolysis in Patients with Autoimmune Hemolytic Anemia (AIHA)

Federico Grossi, MD, Merrill Kingman Shum, MD, Morie A. Gertz, MD, Eloy Roman, MD, Pascal Deschatelets, PhD, Mohamed Hamdani, MS, Frank Stout, Cedric G Francois, MD PhD

Grossi F et al. *Blood* 2018; 132 (suppl 1): 3623. Barcellini W et al. *Blood* 2014; 124: 2930-2936. Kuhn A et al. *Cells* 2023; 12(6): 887.

## **Clinical Pearls**

- Clinical severity of wAIHA is influenced by antibody class, ability of antibodies to activate complement, and adequacy of bone marrow compensatory response
- DAT is cornerstone of diagnosis but can be negative in 5-10% cases
- Identification of secondary etiologies is essential as therapy can be different

#### **Clinical Pearls**

- First line therapy includes steroids with slow taper to prevent relapse
- Rituximab is the preferred second line therapy and should be considered in first line in select cases
- Erythropoietin can be effective therapy in patients with inadequate erythropoietic response

### **Clinical Pearls**

- Many complications associated with AIHA
- Thrombosis is common and thromboprophylaxis is important in high-risk situations
- Infectious complications are often iatrogenic and should be attentioned
- New therapeutic agents directed at pathogenic mechanism of the disease (B-cell and plasma directed therapy, IgG reduction, phagocytosis inhibition) are in progress